Structural and biophysical characterization of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2: insights into engineering thermostable enzymes for CO2 sequestration.
نویسندگان
چکیده
Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.
منابع مشابه
Dissolved Inorganic Carbon Uptake in <i>Thiomicrospira crunogena</i> XCL–2 is ATP–sensitive and Enhances RubisCO–mediated Carbon Fixation
............................................................................................................................. iv Chapter 1Introduction ........................................................................................................1 1.1 Hydrothermal Vent Habitat ................................................................................1 1.2 Thiomicrospira crunogena...
متن کاملThe carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena.
Chemolithoautotrophic bacteria grow in habitats with a variety of dissolved inorganic carbon (DIC) concentrations and are likely to have transport-related adaptations to DIC scarcity. Carbon-concentrating mechanisms (CCMs) are present in many species of cyanobacteria, enabling them to grow in the presence of low concentrations of CO2 by utilizing bicarbonate transporters and CO2 traps to genera...
متن کاملExpression and function of four carbonic anhydrase homologs in the deep-sea chemolithoautotroph Thiomicrospira crunogena.
The hydrothermal vent chemolithoautotroph Thiomicrospira crunogena grows rapidly in the presence of low concentrations of dissolved inorganic carbon (DIC) (= CO(2) + HCO(3)(-) + CO(3)(-2)). Its genome encodes alpha-carbonic anhydrase (alpha-CA), beta-CA, carboxysomal beta-like CA (CsoSCA), and a protein distantly related to gamma-CA. The purposes of this work were to characterize the gene produ...
متن کاملCodon-optimized Carbonic Anhydrase from Dunaliella species: Expression and Characterization
Carbonic anhydrases (CAs) has been focused as biological catalysis for CO2 sequestration process because it can catalyze the conversion of CO2 to bicarbonate. Here, codon-optimized sequence of α type-CA cloned from Duneliala species. (DsCAopt) was constructed, expressed, and characterized. The expression level in E. coli BL21(DE3) was better for codon-optimized DsCAopt than intact sequence of D...
متن کاملThe Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2
Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 71 Pt 8 شماره
صفحات -
تاریخ انتشار 2015